If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x=200
We move all terms to the left:
x^2+40x-(200)=0
a = 1; b = 40; c = -200;
Δ = b2-4ac
Δ = 402-4·1·(-200)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{6}}{2*1}=\frac{-40-20\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{6}}{2*1}=\frac{-40+20\sqrt{6}}{2} $
| 9u+48=15u | | 43=-5a+23 | | 7x–4=9(x–1) | | 5.5+0.45x=x | | 10=3x-4+2x+1 | | 14=3a-12 | | 9/x=6 | | 1/2=6x-7 | | 9x =6 | | 25x+5x+30=180 | | 3x-11x=-3-13 | | 9(b-3)-4=32 | | X+x+6x-15+6x-15=96 | | 4^5x+4=20 | | 3x+5-2x=8-20 | | 3z+8=9z | | 7x-4=9(x-1) | | 5(8-7p)=5p | | a+3a-3=6+3 | | 1/3(9x-27)+6x=0 | | -4=-4(w+3) | | -4x-16=-8(x+6) | | 7(3x-2)+5=6(2x-1)24 | | 8=(0.75)a+12-a+4 | | A-9z=7z-5-z | | -6x-3+8x=2x+9 | | 2+5=x/5 | | 5n−14=8n+4 | | 3.4-5.6=2x-7x | | 144=n/7 | | n/9=-8-(-1) | | w/9-4=-11 |